
Dyalog
Release Notes

Dyalog version 17.1

The tool of thought for software solutions

Dyalog is a trademark ofDyalog Limited
Copyright©1982-2019by Dyalog Limited
All rights reserved.

DyalogReleaseNotes

Dyalog version 17.1
DocumentRevision: 20240212_171

Unless stated otherwise, allexamples in this document assumethat⎕IO ⎕ML ← 1

No part ofthis publicationmay be reproduced in any formby anymeanswithout the
priorwritten permission ofDyalog Limited.

Dyalog Limitedmakes no representations orwarrantieswith respect to the contents
hereofand specifically disclaims any impliedwarranties ofmerchantability or fitness for
any particularpurpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight SystemsApS.
Array Editor is copyright ofdavidliebtag.com
Raspberry Pi is a trademark oftheRaspberry PiFoundation.
Oracle®, Javascript™and Java™are registered trademarks ofOracleand/or its
affiliates.
UNIX®is a registered trademark in theUnited States and other countries, licensed
exclusively through X/Open Company Limited.
Linux® is the registered trademark ofLinus Torvalds in theU.S. and other countries.
Windows®is a registered trademark ofMicrosoft Corporation in theUnited States and
other countries.
macOS®andOS X®(operating system software)are trademarks ofApple Inc.,
registered in theU.S. and other countries.

Allother trademarks and copyrights areacknowledged.

iii

Contents

Chapter 1: Highlights 1
Serial Number 4
Key Features 5
Announcements 7
System Requirements 8
Interoperability 9

Chapter 2: Object Reference Changes 13
AsChild 14
CEFVersion 15
DoPopup 16
HTML 17
HTMLRenderer 18
HTTPRequest 22
InterceptedURLs 26
PrintToPDF 27
SelectCertificate 28
ShowDevTools 29
URL 30
WebSocketClose 31
WebSocketError 31
WebSocketReceive 32
WebSocketSend 33
WebSocketUpgrade 34

Chapter 3: Non-Windows Specific Features 35
Summary 35

Index 37

Chapter 1: Highlights 1

Chapter 1:

Highlights

For version 17.1, the focus of the efforts of the Dyalog development team has been to
make Dyalog APL easier to install, update, integrate and deploy. Significant work
has also been done on interpreter performance and potential new language features,
but this work will not become available until version 18.0, scheduled for released in
2020.

Highlights of version 17.1 include:

Ease of Installation
Dyalog APL no longer requires pre-approval of a licence application and it can now
be downloaded on demand fromwww.dyalog.comwith or without registration. Note
that the use of Dyalog APL is subject to a licence agreement and, in particular,
Dyalog APL is not free for commercial use. To use Dyalog for commercial purposes
you must contact Dyalog to obtain a commercial licence.

UnderMicrosoft Windows, Dyalog-produced binaries including the installer and
executables are digitally signed, making them easier to install in corporate and other
secure environments.

Dyalog APL is “Cloud Ready”
APL-based components are now easier to install and manage on servers in the cloud
or in corporate server environments:

UnderMicrosoft Windows, the RunAsService configuration option has been
extended to allow Dyalog APL forWindows to be started with the GUI disabled. In
this mode, Dyalog APL consumes significantly fewer system resources, allowing a
much larger number of service processes to be started simultaneously on a Windows
Server.

Non-Windows versions which are started without a terminal attached (“headless”)
can now always be debugged using RIDE. Output from headless instances of APL
can produce redirected output which is free of terminal control sequences.

Chapter 1: Highlights 2

Dyalog has published Docker Containers on https://dockerhub.com, making it
straightforward to launch applications based on Dyalog APL version 17.1 for Linux
on any real or virtual Linux machine. This includes containers that provide pre-
configured web servers (based on MiServer) or web services (based on JSONServer) –
including ODBC driver support.

Integration
For decades, Dyalog APL has provided tight integration with standard application
interfaces such as COM and the Microsoft.NET framework – underMicrosoft
Windows. In version 17.0, a prototype of a new wrapper was provided, making it
possible to wrap APL applications in standard C-style libraries (Dynamic Link
Library or Shared Object files).

Version 17.1 provides a significantly enhanced version of this mechanism, with
sample applications including a framework which can be used to easily turn any APL
workspace into a library fromwhich APL functions can be called with arguments and
results passed in the form of JSON strings.

Cross Platform UI
The HTMLRenderer is a new mechanism for creating identical graphical user
interfaces (GUI) on multiple platforms. It was first made available with Dyalog APL
version 17.0 – for macOS and Microsoft Windows - and allows APL applications to
make use of the Chromium Embedded Framework (CEF) to render HTML/JavaScript
based user interfaces.

Version 17.1 provides significantly enhanced support for the CEF and adds GNU
Linux to the list of supported platforms. In addition to being more robust, the v17.1
HTMLRenderer adds support forWebSockets, and a Certificate Selector which
facilitates the embedding of components which require encrypted communications
into an HTMLRenderer-based GUI.

A new user command]htmlmakes it easy to render the results of functions which
generate HTML (including SVG) under both the Windows IDE and RIDE. The]plot
command makes use of the same technology to generate and display SharpPlot
graphics from Dyalog APL running on any platform.

Chapter 1: Highlights 3

Source Code Management
Version 17.1 includes the “Link” system, which can be used to establish (optionally
bi-directional) synchronisation between code in the workspace and text files. Link
makes it simple to store APL source code in Unicode text files, which are typically
managed by Git or SVN. Functions can either be edited in the workspace using the
internal Dyalog editor, or using external editors to edit the text files – in both cases
the source file and the version in the workspace are kept in synch.

The version of Link included with v17.1 includes experimental support for an Array
Notation for representing APL array constants in text-based source files.

Open Source Projects
An increasing number of the tools which are written in APL and included with
Dyalog APL are provided as open-source projects on GitHub. Users can elect to use
the fully supported versions of the code which are installed alongside Dyalog APL,
or they can download or clone the GitHub repositories, if they want to use the latest
versions of the tools – or contributed to the projects. This includes the Link project
for source code management.

Chapter 1: Highlights 4

Serial Number
If you have registered your copy of Dyalog or have a commercial licence then you
will have been sent a Dyalog serial number; this serial number is individual to you
and corresponds to the type of licence that you are entitled to use.

On Microsoft Windows, you can enter your Dyalog serial number during or after the
installation process; on all other platforms the Dyalog serial number should be
entered after installation.

Instructions on how to enter your Dyalog serial number are included in the following
platform-specific documents:

l Dyalog for macOS Installation and Configuration Guide
l Dyalog for Microsoft Window Installation and Configuration Guide
l Dyalog for UNIX Installation and Configuration Guide
l Dyalog for Raspberry Pi User Guide

If you already have a registered or commercial version of Dyalog then you will
already have a Dyalog serial number – if cannot remember it, then please contact
sales@dyalog.com.

NOTE:

Using or entering a serial number other than the one issued to you is not permitted.
Transferring the serial number to anyone else is not permitted.
For the full licence terms and conditions, see:
https://www.dyalog.com/uploads/documents/terms_and_conditions.pdf

mailto:sales@dyalogs.com

Chapter 1: Highlights 5

Key Features
There have been a number of performance improvements in 17.1, but the main area of
improvement is in its stability. This has been achieved using extensive automated
testing of random expressions to identify edge conditions requiring correction.

Language Enhancements
l ⎕JSON supports a new Null variant that specifies the APL representation of
a JSON null value. It may be either ⊂'null' (the default) or ⎕NULL.

l The Recurse variant option for ⎕NINFO may be 2. This means the same as
the value 1, but if any unreadable directories are encountered they are
skipped (whereas if Recurse is 1, ⎕NINFO stops and generates an error).

l ⎕NINFO and other system functions and commands that handle files have
been enhanced to deal with non-standard file names. This enhancement
applies only to non-Windows platforms. See Unusual File Names on page
6.

l ⎕NINFO now reports whether a directory is readable or writable (exception:
on Microsoft Windows, a left argument of 12 returns ¯1 for a directory).

l A 4th column has been added to Syntax Colour Tokens i-beam function.
This is intended for the benefit of non-Windows users using the tty interface
and indicates the video/foreground/background colour index.

GUI Enhancements
l The previously experimental HTMLRenderer object is now fully supported
in Version 17.1. See HTMLRenderer on page 18.

l Setting the TitleHeight and/or TitleWidth properties of the Grid object now
select the default height and/or width.

Other Enhancements
l The RunAsService parameter now accepts the value 2. This setting reduces
the resources used by a Dyalog service by disabling the graphical user-
interface features. ⎕WC object will fail with a LIMIT ERROR unless the
object is Timer, which is the only one that remains enabled.

l The APL command line accepts two new options +s (force the display of
the Session window) and +q (force a quit on error).

Chapter 1: Highlights 6

Miscellaneous Changes
l The Log Tab of the Configuration Dialog has been removed and its
contents moved to the Session Tab.

l The default value of APL_MAX_THREADS has been changed from the
number of virtual processors to 1. This means that parallel execution is no
longer enabled by default. See Programming Reference Guide: Parallel
Execution.

l In previous versions, if you attempted to write files to c:\windows, the
Windows VirtualStore would be invoked, resulting in the file apparently
being written to c:\windows where in actual fact it was written to
%localappdata%\virtualstore. The Version
17.1dyalog.exe.manifest has been altered so that you will now get
an error when attempting to write to c:\windows.

Unusual File Names
On non-Windows platforms, file names are exposed by the Operating System using
UTF-8 encoding which Dyalog translates internally to characters.

In the Unicode Edition, if the UTF-8 encoding is invalid, Dyalog replaces each
offending byte with a unique Unicode symbol (in the Low Surrogate Area of the
Unicode charts) that is mapped back to the original byte by the other system
functions (including ⎕NTIE and ⎕NDELETE) that take native file names as
arguments. The display of a file name containing these mapped bytes may appear
strange.

In the Classic Edition, offending bytes are replaced by the ? symbol, which means
that the names reported do not accurately identify the files.

Bug Fixes
A number of bug fixes implemented in Version 17.1 may change the way that
existing code operates and are therefore documented in this section.

l 16013 ⎕NEXISTS now returns 0 for an empty right argument; in previous
versions it generated a DOMAIN ERROR.

l 16195 Interval Index no longer gives DOMAIN ERROR for consecutive
duplicate values in the left argument. Consecutive duplicate values create
an empty interval, and no items of the right argument will lie in an empty
interval.

Chapter 1: Highlights 7

Announcements
Tools and Interfaces
In addition to the software provided as part of the Dyalog installation package, there
are a growing number of tools and interfaces available for download fromGitHub.
For details, see https://www.dyalog.com/tools/tools-and-code-libraries.htm.

Withdrawal of Support for Version 15.0
The supported Versions of Dyalog APL are now Version 17.1, 17.0 and 16.0.
Version 15.0 and earlier versions are no longer supported.

Planned Operating System Requirements for the
next version
Dyalog Ltd expects that the next version of Dyalog will require the following
minimum platform requirements:

Operating System Version

Microsoft Windows Windows 7/Server 2008 R2

AIX
POWER 8 (if you have a
POWER 7 requirement, please
contact sales@dyalog.com).

Linux Debian 8

OS X OS X Yosemite 10.10.x

Raspberry Pi Raspbian Jessie

Further updates to this information will appear on the Forums as and when available.

Planned Hardware Requirements for next version
The same as Dyalog Version 17.1.

https://www.dyalog.com/tools/tools-and-code-libraries.htm

Chapter 1: Highlights 8

System Requirements
Microsoft Windows
Dyalog APL Version 17.1 is supported on versions ofMicrosoft Windows from
Windows 7 orWindows Server 2008 R2, up to and including Windows 10 and
Windows Server 2016.

Microsoft .NET Interface
Dyalog APL Version 17.1 .NET Interface requires Version 4.0 or greater of the
Microsoft .NET Framework. It does not operate with earlier versions of .NET.

For full Data Binding support (including support for the
INotifyCollectionChanged interface1) Version 17.1 requires .NET Version
4.5. The Syncfusion libraries supplied with Version 17.1 require .NET 4.6.

The examples provided in the sub-directory Samples/asp.net require that IIS is
installed. If IIS and ASP.NET are not present, the asp.net sub-directory will not be
installed during the Dyalog installation.

AIX
For AIX, Version 17.1 requires AIX 7.2 or higher, and a POWER7 chip or higher.

Raspberry Pi
On the Raspberry Pi, Dyalog 32-bit Unicode supports Raspbian Jessie or later
(Bookworm requires Dyalog version 17.1.48479 or later.

Non-Pi Linux
For non-Pi Linux, Version 17.1 only exists as 64-bit interpreters - there are no 32-bit
versions. It is built on Debian 8; it should run on all recent distributions. See
https://forums.dyalog.com/viewtopic.php?f=20&t=1504 for a list of tested platforms.
Note that the HTMLRenderer has additional pre-reqs which are detailed in the
Dyalog forums at https://forums.dyalog.com/viewtopic.php?f=20&t=1504.

macOS/Mac OS X
Version 17.1 requires Mac OSX Yosemite or El Capitan or macOS Sierra or later.
The target Mac must have been introduced in 2010 or later.

1This interface is used by Dyalog to notify a data consumer when the contents of a variable, that is
data bound as a list of items, changes.

https://forums.dyalog.com/viewtopic.php?f=20&t=1504
https://forums.dyalog.com/viewtopic.php?f=20&t=1504

Chapter 1: Highlights 9

Interoperability
Introduction
Workspaces and component files are stored on disk in a binary format (illegible to
text editors). This format differs between machine architectures and among versions
of Dyalog. For example, a file component written by a PC may well have an internal
format that is different from one written by a UNIX machine. Similarly, a workspace
saved fromDyalog Version 17.0 will differ internally from one saved by a previous
version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able
to interoperate by sharing workspaces and component files. FromVersion 11.0,
component files and workspaces can generally be shared between Dyalog
interpreters running on different platforms. However, this is not always possible and
the following sections describe limitations in interoperability:

Code and ⎕ORs
Code that is saved in workspaces, or embedded within ⎕ORs stored in component
files, can only be read by the Dyalog version which saved them and later versions of
the interpreter. In the case of workspaces, a load (or copy) into an older version
would fail with the message:

this WS requires a later version of the interpreter.

Every time a ⎕OR object is read by a version later than that which created it, time
may be spent in converting the internal representation into the latest form. Dyalog
recommends that ⎕ORs should not be used as a mechanism for sharing code or objects
between different versions of APL.

Chapter 1: Highlights 10

"Ordinary" Arrays
With the exception of the Unicode restrictions described in the following
paragraphs, Dyalog APL provides interoperability for arrays that only contain
(nested) character and numeric data. Such arrays can be stored in component files - or
transmitted using TCPSocket objects and Conga connections, and shared between
all versions and across all platforms.

Full cross-platform interoperability of component files is only available for large-
span component files.

Null Items (⎕NULL) and Compressed Components
⎕NULLs and components from compressed component files that were created in
Version 17.1 can be brought into Versions 14.1, 15.0, 16.0 and 17.0 provided that
the interpreters have been patched to revision 35953 or higher. Attempts to bring
⎕NULL or compressed component into earlier versions of Dyalog APL or lower
revisions of the aforementioned versions will fail with:

DOMAIN ERROR: Array is from a later version of APL.

Object Representations (⎕OR)
An attempt to ⎕FREAD a component containing a ⎕OR that was created by a later
version of Dyalog APL will generate DOMAIN ERROR: Array is from a
later version of APL. This also applies to APL objects passed via Conga or
TCPSockets, or objects that have been serialised using 220⌶.

32 vs. 64-bit Component Files
It is no longer possible to create or write to small-span (32-bit) files; however it is
still currently possible to read from small span files. Setting the second item of the
right argument of ⎕FCREATE to anything other than 64 will generate a
DOMAIN ERROR.

Note that small-span (32-bit-addressing) component files cannot contain Unicode
data. Unicode editions of Dyalog APL can only write character data which would be
readable by a Classic edition (consisting of elements of ⎕AV).

External Variables
External variables are subject to the same restrictions as small-span component files
regarding Unicode data. External variables are unlikely to be developed further;
Dyalog recommends that applications which use them should switch to using
mapped files or traditional component files. Please contact Dyalog if you need
further advice on this topic.

Chapter 1: Highlights 11

32 vs. 64-bit Interpreters
There is complete interoperability between 32- and 64-bit interpreters, except that
32-bit interpreters are unable to work with arrays or workspaces greater than 2GB in
size.

Note however that underWindows a 32-bit version of Dyalog APL may only access
32-bit DLLs, and a 64-bit version of Dyalog APL may only access 64-bit DLLs. This
is a Windows restriction.

Unicode vs. Classic Editions
Two editions are available on some platforms. Unicode editions work with the entire
Unicode character set. Classic editions (which are only available to commercial and
enterprise users for legacy applications) are limited to the 256 characters defined in
the atomic vector, ⎕AV.

Component files have a Unicode property. When this is enabled, all characters will
be written as Unicode data to the file. The Unicode property is always off for small-
span (32-bit addressing) files, as these cannot contain Unicode data. For large-span
(64-bit addressing) component files, the Unicode property is set on by Unicode
Editions and off by Classic Editions, by default. The Unicode property can
subsequently be toggled on and off using ⎕FPROPS.

When a Unicode edition writes to a component file that cannot contain Unicode
data, character data is mapped using ⎕AVU; it can therefore be read without problems
by Classic editions.

A TRANSLATION ERROR will occur if a Unicode edition writes to a non-Unicode
component file (that is either a 32-bit file, or a 64-bit file when the Unicode property
is currently off) if the data being written contains characters that are not in ⎕AVU.

Likewise, a Classic edition will issue a TRANSLATION ERROR if it attempts to read
a component containing Unicode data that is not in ⎕AVU from a component file.

A TRANSLATION ERROR will also be issued when a Classic edition attempts to
)LOAD or)COPY a workspace containing Unicode data that cannot be mapped to
⎕AV using the ⎕AVU in the recipient workspace.

Chapter 1: Highlights 12

TCPSocket objects have an APL property that corresponds to the Unicode property
of a file, if this is set to Classic (the default) the data in the socket will be restricted
to ⎕AV, if Unicode it will contain Unicode character data. As a result,
TRANSLATION ERRORs can occur on transmission or reception in the same way as
when updating or reading a file component.

The symbols ⊆, ⍸, ⍤, ⍠, ⌸ and ⌺ used for the Nest (Interval Index) and Where
(Partition) functions, the Rank, Variant, Key and Stencil operators respectively are
available only in the Unicode edition. In the Classic edition, these symbols are
replaced by ⎕U2286, ⎕U2378, ⎕U2364, ⎕U2360, ⎕U2338 and ⎕U233A
respectively. In both Unicode and Classic editions Variant may be represented by
⎕OPT.

Very large array components
An attempt to read a component greater than 2GB in 32-bit interpreters will result in
a WS FULL.

TCPSockets and Conga
TCPSockets and Conga can be used to communicate between differing versions of
Dyalog APL and are subject to similar limitations to those described above for
component files.

Auxiliary Processors
A Dyalog APL process is restricted to starting an AP of exactly the same architecture
from the same operating system. In other words, the APmust share the same word-
width and byte-ordering as its interpreter process.

Session Files
Session (.dse) files can only be used on the platform on which they were created and
saved. UnderMicrosoft Windows, Session files may only be used by the architecture
(32-bit-or 64-bit) of the Version of Dyalog that saved them.

Chapter 2: Object Reference Changes 13

Chapter 2:

Object Reference Changes

Chapter 2: Object Reference Changes 14

AsChild Property

Applies To: HTMLRenderer

Description

The AsChild property is a Boolean (default 0) indicating how the HTMLRenderer
object is displayed. AsChild must be set when the object is created and may not
subsequently be changed.

If AsChild is 0 (the default) the HTMLRenderer is displayed in a separate top-level
window. If the HTMLRenderer is created (with AsChild 0) as a child of another
object it still appears as a separate window and its Size and Posn relate to the screen
rather than to its parent object. However, it is a member of its parent object's
hierarchy and will disappear when its parent is closed.

If AsChild is 1, the HTMLRenderer must be created as a child of a valid parent type
other than Root (which is not supported) and is displayed in a sub-window within its
parent.

This property only applies to Microsoft Windows. On other platforms it is ignored.

Chapter 2: Object Reference Changes 15

CEFVersion Property

Applies To: HTMLRenderer

Description

CEFVersion is a read-only property that reports the version of the Chromium
Embedded Framework (CEF)1 that is being used. This information is primarily used
for debugging and support.

It is a 10-element vector containing the following:

Index Description

[1]
Formatted CEF release number. This is the primary identifier for a
version of CEF.

[2] CEF major version.

[3] Commit number.

[4] Chromium version number.

[5] Chromium version number.

[6] Chromium version number.

[7] Chromium version number.

[8] GIT Hashes

[9] GIT Hashes

[10] GIT Hashes

1https://en.wikipedia.org/wiki/Chromium_Embedded_Framework

Chapter 2: Object Reference Changes 16

DoPopup Event 846

Applies To: HTMLRenderer

Description

This event is triggered when the HTMLRenderer client attempts to open a new
window. This is often done using an HTML <a> tag with the target attribute set to
open a URL in a new window. Note that this does not apply to JavaScript Popup
Boxes.

Example:
Dyalog Website

By default the HTMLRenderer ignores a request for a new window, but if the
DoPoup event, is enabled, it provides the information needed to process the request
in the workspace.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows:

[1] Object ref or character vector

[2] Event 'DoPopup' or 846

[3] URL the requested url

[4] Attributes requested window attributes (see below)

Attributes is a 7-element nested vector that specifies the requested attributes for the
new window. The HTMLRenderer currently provides no mechanism to use this
information.

To respond to the request for a new window, the callback function should open the
requested URL as appropriate, for example, in a newly created HTMLRenderer
object.

Chapter 2: Object Reference Changes 17

HTML Property

Applies To: HTMLRenderer

Description

The HTML property is a character vector that specifies the content to be rendered by
the HTMLRenderer object. Dyalog does not perform any pre-processing of the text
nor does it verify that it is properly formed HTML using single-byte character data,
including any necessary escaping and encoding.

See also: URL on page 30.

Note:

Typically, you will need to UTF-8 encode any text outside the Unicode range 0-127.

Chapter 2: Object Reference Changes 18

HTMLRenderer Object

Purpose: The HTMLRenderer Object is a cross-platform mechanism for
producing Graphical User Interfaces (GUI), based on HyperText
Markup Language (HTML).

Parents ActiveXControl, Form, Group, PropertyPage, Root, SubForm

Children Timer

Properties Type, HTML, Posn, Size, URL, Coord, Border, Visible, Event,
Sizeable, Moveable, SysMenu, MaxButton, MinButton, IconObj,
Data, Attach, Translate, KeepOnClose, AsChild, InterceptedURLs,
CEFVersion, Caption, MethodList, ChildList, EventList, PropList

Methods Detach, PrintToPDF, WebSocketSend, ShowDevTools, Wait

Events Close, Create, HTTPRequest, WebSocketUpgrade,
WebSocketReceive, WebSocketClose, WebSocketError, DoPopup,
SelectCertificate

Description

The HTMLRenderer object renders HTML in a window on the screen. It may appear
as a top-level window, similar to a Form, or be displayed within another GUI object
according to the value of the Boolean AsChild property which must be specified
when the HTMLRenderer is created. Several HTMLRenderer objects may co-exist in
the Dyalog application.

The HTMLRenderer is implemented using the Chromium Embedded Framework
(CEF)1. Note that if the ENABLE_CEF parameter is set to 0 (its default value is 1)
the CEF is disabled and an attempt to create an HTMLRenderer object will fail with
an error message.

The HTMLRenderer object can be considered as two components; a client
implemented using CEF and an internal server which implements an interface from
the APL workspace to the client. The client may communicate with both the internal
server and external servers on the web. Thus it can combine and display information
from external and internal feeds.

1https://en.wikipedia.org/wiki/Chromium_Embedded_Framework

Chapter 2: Object Reference Changes 19

Internal and external communications are distinguished primarily by the
InterceptedURLs property which specifies which requests from the HTMLRenderer
client component are to he handled by the internal server component and which are
to be serviced by the internet. The default value of InterceptedURLs has been chosen
so that in most cases it can be ignored.

The HTMLRenderer object supports both the HTTP protocol and the WebSocket
(WS) protocol.

Using the HTTP protocol, the client requests a resource, such as a style-sheet, an
image, or a complete web page, which the server then delivers. All communication is
initiated by the client and involves the creating, use, and closing of a TCP/IP socket.

Using WS protocol, the client asks the server for a permanent communications
channel (this is done by upgrading the TCP/IP socket to a WebSocket) which may
subsequently be used for messages initiated by either the client or the server.

The internal server component of the HTMLRenderer is implemented by functions in
the workspace.

HTTP protocol communications are handled by callback functions on the
HTTPRequest event.

WS protocol communications are handled:

l by the WebSocketUpgrade event, which reports the initial connection and
the WebSocket ID,

l by a callback on the WebSocketReceive event
l and by calling the WebSocketSend method.

The HTMLRenderer may be initialised by setting its HTML property to a character
vector representing a base HTML document. This will typically contain references to
other documents, such as JavaScript and CSS files which contain code that can
influence the way the base HTML is rendered, image files in a variety of formats, and
of course hyperlinks to other pages.

If the HTML contains references to other documents, the CEF will retrieve each one
by making an HTTP request. Requests with URLs that match a triggering pattern in
the InterceptedURLs property will generate an HTTPRequest event on the
HTMLRenderer, which can be directed to a callback function. The callback can
either service the request or leave it to the CEF to handle it.

Requests with URLs that do not match a pattern in InterceptedURLs, or that match a
pattern with a 0 in the second column, will be handled by the CEF.

Requests handled by the CEF push the request out to the network to be serviced by
an external web server and require that the system has an active internet connection.

Chapter 2: Object Reference Changes 20

An alternative is to initialise the HTMLRenderer by setting its URL property. This is
typically used to display external content , rather than content delivered from the
workspace.

If neither HTML nor URL is set when the HTMLRenderer is created, it will generate
an HTTPRequest event with a requested url of http://dyalog_root.

When the HTMLRenderer is displayed in its own window, the window caption is set
by an assignment to its Caption property. The window caption may subsequently
change when content is displayed (typically by the title tag in the html). The Caption
property reports the current window caption.

Example
∇ Example;enc;Q;U;tw

[1] 'f'⎕WC'Form' 'HTMLRender'
[2] f.(Coord Size)←'Pixel'(730 700)
[3] 'pco'⎕CY'dfns'
[4] 'f.l1'⎕WC'Label' 'Primes<100'(10 10)
[5] 'f.p'⎕WC'HTMLRenderer'('AsChild' 1)('Posn' 40 10)(270 200)
[6] f.p.HTML←HTMLTable('*'@(0∘pco)10 10⍴⍳100)
[7] Q←'Has the Large Hadron Collider destroyed the world yet?'
[8] 'f.l2'⎕WC'Label'Q(320 10)
[9] 'f.q'⎕WC'HTMLRenderer'('ASChild' 1)
[10] f.q.(Posn Size)←(350 10)(360 360)
[11]
U←'http://hasthelargehadroncolliderdestroyedtheworldyet.com'
[12] f.q.URL←U
[13] tw←'<a class="twtimeline"'
[14] tw,←'href="https://twitter.com/dyalogapl">'
[15] tw,←'Tweets by dyalogapl'
[16] tw,←'<script async
src="http://platform.twitter.com/widgets.js"'
[17] tw,←'charset="utf-8"></script>'
[18] 'f.t'⎕WC'HTMLRenderer'('AsChild' 1)
[19] f.t.(Posn Size)←(10 400)(680 280)
[20] f.t.HTML←tw

∇

enc←{'<',⍺,'>',(∊⍕⍵),'</',((~∨\' '=⍺)/⍺),'>'}

HTMLTable←{'table border="1"'enc∊(⊂'tr')enc∘∊¨↓(⊂'td')enc¨⍵}

Chapter 2: Object Reference Changes 21

Chapter 2: Object Reference Changes 22

HTTPRequest Event 840

Applies To: HTMLRenderer

Description

An HTTPRequest event is raised whenever the HTMLRenderer requests a url from
the workspace. See InterceptedURLs property. The request could be generated by a
form submission, clicking on a hyperlink, an AJAX request or a link to a resource
like a style sheet, image or JavaScript file. An HTTPRequest event is also raised
when the HTMLRenderer is initialised and both HTMLand URL are empty.

The callback function must "fill in the blanks" in the event message and return the
modified event message as its result.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is an 11-element vector as follows:

[1] Object ref or character vector

[2] Event 'HTTPRequest' or 840

[3] 'ProcessRequest' (unused)

[4] Handle Initially 0, must be set to 1.

[5] Status Integer HTTP status code (initially 0).

[6] Message Character vector containing the HTTP status message
(initially empty).

[7] MIME Character vector containing the MIME type (initially
empty). See below.

[8] URL Character vector containing the requested URL.

[9] Headers Character vector containing the HTTP Request headers
(initially empty).

[10] Body Character vector containing the HTTP Request body
(initially empty).

[11] Method Character vector containing the HTTP method e.g.
'GET' or 'POST'.

Chapter 2: Object Reference Changes 23

To process the request, the callback function should return the message with only the
following items changed. Note that only elements [4 5 6 10] are always required,
and it is important to set element [4] to 1.

[4] Handle 1

[5] Status Success is indicated by 200.

[6] Message Success is indicated by 'OK'.

[7] MIME Defaults to 'text/html' and need be specified only if
the response (Body) is not HTML.

[9] Headers Not normally required.

[10] Body Typically this will contain HTML.

MIME types include:

l text/html
l text/css
l text/plain
l text/csv
l application/javascript
l application/xml
l application/json

For a complete list of media/MIME types, see:

https://www.iana.org/assignments/media-types/media-types.xhtml:

Chapter 2: Object Reference Changes 24

Example

<!DOCTYPE html>
<html>
<head>
<Title>HTTPRequest Example</Title>
</head>
<body>

<h2>Simple Form</h2>

<form action="Hello">
First name:

<input type="text" name="firstname" value="Mickey">

Last name:

<input type="text" name="lastname" value="Mouse">

<input type="submit" value="Submit">

</form>

<p>When you click the "Submit" button, the HTMLRenderer
will fire an HTTPRequest event.</p>

</body>
</html>

∇ msg←SayHello msg;url;names;first;last;response
[1] url←8⊃msg
[2] 'Requested URL is: ',url
[3] names←(url∊'?&')⊂url
[4] first last←{(⍵⍳'=')↓⍵}¨names
[5] response←'<!DOCTYPE html><html><head>'
[6] response,←'<Title>Hi Folks</Title>'
[7] response,←'</head><body>'
[8] response,←'<h1 align="center">Hello '
[9] response,←first,' ',last,'</h1>'
[10] response,←'</body></html>'
[11] msg[4 5 6 10]←1 200 'OK'response

∇

∇ run
[1] 'hr'⎕WC'HTMLRenderer'
[2] hr.Size←25 25
[3] hr.HTML←html
[4] hr.onHTTPRequest←'SayHello'

∇

run
Requested URL is: http://dyalog_
root/Hello?firstname=Mickey&lastname=Mouse

Chapter 2: Object Reference Changes 25

Chapter 2: Object Reference Changes 26

InterceptedURLs Property

Applies To: HTMLRenderer

Description

The InterceptedURLs property is a 2-column matrix that specifies whether the
HTMLRenderer will attempt to satisfy a request for a resource from the workspace or,
via the CEF, from the internet. If directed to the workspace, the request will trigger an
HTTPRequest event if the protocol is http, or a WebSocketUpgrade event if the
protocol is ws.

The first column is a wild-carded character scalar or vector containing a pattern to
match. The second column is a Boolean indicating whether or not the
HTMLRenderer should trigger an event. InterceptedURLs may contain any number
of rows.

If the requested url is a relative rather than an absolute url, it is prepended by the
string http://dyalog_root/. So, for example, if the HTML property contained
:

<link rel="stylesheet" href="style.css">
<script src="app.js"></script>

the HTMLRenderer will request http://dyalog_root/style.css and
http://dyalog_root/app.js respectively.

When the value of InterceptedURLs is its default ((0 2⍴'') it is treated as if it
were set to ((1 2⍴'*://dyalog_root/*' 1). So by default, requests for a
relative url will fire an event in the workspace while absolute urls will be directed by
the CEF to the internet.

Note that if code in the page creates a web socket intended for internal use, with
anything other than dyalog_root as the url, the url must match a pattern in
InterceptedURLs with 1 in the second column. The following example does not
require a matching pattern in InterceptedURLs.

// Create a new WebSocket.
window.socket = new WebSocket('ws://dyalog_root/');

Chapter 2: Object Reference Changes 27

Examples:

The following will trigger an event for all requested URLs

InterceptedURLs ← 1 2⍴'*' 1

The following will attempt to retrieve from the net URLs containing
'.dyalog.com' and trigger an HTTPRequest event for all other requested URLS

InterceptedURLs ← 2 2⍴'*.dyalog.com*' 0 '*' 1

PrintToPDF Method 845

Applies To: HTMLRenderer

Description

This method writes the content displayed in an object to a specified file in Portable
Document Format (pdf).

The argument to PrintToPDF is a simple character scalar or vector containing a file
name. Note that the method does not add any extension to the file name that is
supplied.

The method returns a Boolean result which indicated whether or not the operation
succeeded. If the file name contains a directory path, the path must already exist. The
user must have permission to write the file.

Chapter 2: Object Reference Changes 28

SelectCertificate Event 848

Applies To: HTMLRenderer

Description

This event is triggered when HTMLRenderer requests a resource from a server that
requires a certificate.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7-element vector as follows:

[1] Object ref or character vector

[2] Event 'SelectCertificate' or 848

[3] Index Integer (see below)

[4] Addr Host address

[5] Port Host port

[6] 'is proxy'

[7] Certificates See below

Certificates is a vector of namespaces, each of which represents an available
certificate and contains the following variables:

Name Description

DER Distinguished Encoding Rules. Character Vector.

Subject Namespace (see below)

Issuer Namespace (see below)

SerialNumber Integer

The Subject and Issuer namespaces contain the following variables:

Name Description

CommonName Character vector

CountryName Character vector

DisplayName Character vector

Chapter 2: Object Reference Changes 29

The application should respond to this event by selecting a certficate from the list of
available certificates reported by the 7th element of the event message. This is done
by having a callback function that sets the 3rd element of the event message (Index)
to the 0-origin index in Certificates and returns the event message as its result.

Example

∇ arg←cb arg
[1] ⍝ SelectCertificate callback function
[2] arg[3]←0 ⍝ Select the first certificate

∇

ShowDevTools Method 849

Applies To: HTMLRenderer

Description

This method displays or hides the CEF development tools window that displays
information about the content being displayed by the HTMLRenderer.

It takes a Boolean argument 0(hide) or 1(display).

Using the example illustrated in the HttpRequest topic ...

hr.ShowDevTools 1

Chapter 2: Object Reference Changes 30

URL Property

Applies To: HTMLRenderer

Description

The URL property is a character vector that specifies the url of a resource to be
requested by the HTMLRenderer. Its default value is an empty character vector.

Specifying URL is an alternative way to setting the HTML property in order to
display content in the HTMLRenderer.

When you set the URL property, the HTMLRenderer will request the corresponding
resource (from either the internet or the workspace via an HTTPRequest event) and
the display will change according to the response. The HTML property is ignored
and remains unchanged.

When you set the HTML property, the content of the HTMLRenderer will change
accordingly. The current value of the URL property is ignored and remains
unchanged.

If you set BOTH URL and HTML in the same statement, the value of URL takes
precedence and the assignment to HTML is ignored (it remains unchanged).

Chapter 2: Object Reference Changes 31

WebSocketClose Event 843

Applies To: HTMLRenderer

Description

This event is triggered when the HTMLRenderer client closes the WebSocket. It is
for notification only.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows:

[1] Object ref or character vector

[2] Event 'WebSocketClose' or 843

[3] ID Character vector containing the ID of the WebSocket

When used as a method, the result is 0.

Example

hr.WebSocketClose '223d0f781e95113'

WebSocketError Event 844

Applies To: HTMLRenderer

Description

This event is triggered an error occurs on the WebSocket. It is for notification only.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows:

[1] Object ref or character vector

[2] Event 'WebSocketError' or 844

[3] ID Character vector containing the ID of the WebSocket

[4] URL The remote url (character vector)

Chapter 2: Object Reference Changes 32

WebSocketReceive Event 842

Applies To: HTMLRenderer

Description

This event is triggered when data is received over a WebSocket. This event is
reported for information only. The result (if any) of a callback function will be
ignored.

Note that the WebSocket protocol provides for the possibility for the data to be sent
in chunks, causing a succession ofWebSocketReceive events. The FIN bit of the last
chunk will be 1. The CEF does not currently implement "chunking", so FIN will
always be 1.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows:

[1] Object ref or character vector

[2] Event 'WebSocketReceive' or 842

[3] ID Character vector containing the ID of the WebSocket

[4] Data Character or integer vector.

[5] FIN Boolean. 1 indicates that this is the last chunk; 0 that there
is more to come.

[6] Datatype 1 = character, 2 - numeric

Example
┌→──┐
│ ┌→───────────────┐ ┌→──────────────┐ ┌→──────────┐ │
│ #.hr │WebSocketReceive│ │5d61d8330065608│ │Hello World│ 1 1 │
│ └────────────────┘ └───────────────┘ └───────────┘ │
└∊──┘

Chapter 2: Object Reference Changes 33

WebSocketSend Method 847

Applies To: HTMLRenderer

Description

This method is used to send data to a WebSocket. The argument to WebSocketSend
is a 2 or 3-element vector as follows:

[1] ID Character vector containing the ID of the WebSocket

[2] Data Character or integer vector. Integers must be in the range 0-255.

[3] FIN
Boolean. 1 indicates that this is the last chunk; 0 that there is
more to come. This is not currently supported by the CEF and
should be omitted.

The result is 0.

Example

hr.WebSocketSend '5d61d8330065608' 'Hello World'
0

Chapter 2: Object Reference Changes 34

WebSocketUpgrade Event 841

Applies To: HTMLRenderer

Description

This event is reported when the client component of an HTMLRenderer object opens
a WebSocket and the requested URL matches a pattern specified by the
InterceptedURLs property. If there is no match, the connection request is processed as
an external request by the Chromium Embedded Framework (CEF)1.

The protocol for establishing the connection is handled internally then this event is
reported when the connection has been made. The WebSocket ID is subsequently
required to send a message by calling the WebSocketSend method or to close the
connection using the WebSocketClose method. Note that several WebSocket
connections may be made concurrently. Should the connection fail, a
WebSocketError event will be reported instead.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows:

[1] Object ref or character vector

[2] Event 'WebSocketUpgrade' or 841

[3] ID Character vector containing the ID of the WebSocket

[4] URL The requested url of the WebSocket

Example
┌→──┐
│ ┌→───────────────┐ ┌→──────────────┐ ┌→──────────┐ │
│ #.hr │WebSocketUpgrade│ │5d61d8330065608│ │ws://myapp/│ │
│ └────────────────┘ └───────────────┘ └───────────┘ │
└∊──┘

1https://en.wikipedia.org/wiki/Chromium_Embedded_Framework

Chapter 3: Non-Windows Specific Features 35

Chapter 3:

Non-Windows Specific Features

Summary
This section summarises the changes specific to Dyalog APL Version 17.1 on non-
Windows platforms. This list currently consists of:

l AIX
l Linux (including the Raspberry Pi)
l macOS/ Mac OS X

Hardware/Software Requirements
These details are subject to change, particularly for Linux. It is possible that using the
HTMLRenderer will require more recent versions of distributions than are required
for non-HTMLRenderer usage. More information can be found on the Dyalog
Forums.

Our policy is, where possible, to support operating system versions which will still
be in standard support within 2 or 3 months of the release date of a version of Dyalog
APL.

https://forums.dyalog.com/viewforum.php?f=20
https://forums.dyalog.com/viewforum.php?f=20

Chapter 3: Non-Windows Specific Features 36

RIDE and Dyalog APL 17.1
Dyalog Version 17.1 supports RIDE 4 only; earlier versions of RIDE are not
supported. Dyalog recommends that RIDE 4.2 is used by. RIDE 4.2 can be used with
Versions 17.0 and 16.0 too.

RIDE 4.2 is supported on Raspberry Pi models 2 and 3 only; models Zero and 1 are
not supported (the underlying libraries which RIDE is built on are not available for
the Pi Zero and 1). The Dyalog RIDE Reference Guide details how to configure the
APL session to support the underscored alphabet; contact support@dyalog.com if
you wish to be able to generate key-chords which result in the underscored alphabet
being entered into APL.

Note that on Linux and Pi, if RIDE 4.2 is installed after Dyalog 16.0 an extra icon
will be added to the window manager's start menu which will start Dyalog with a
RIDE front end.

HTMLRenderer on Linux
The HTMLRenderer object is now supported in Dyalog Version 17.1 for Linux (not
on the Raspberry Pi). See the HTMLRenderer User Guide for more infomation. See
the Dyalog Forums for information about the pre-reqs needed for using the
HTMLRenderer on Linux:

Location of configuration and log files
In Dyalog 17.1 the location of various configuration and log files has been changed
so that they are all put in one directory. See the UNIX Installation and Configuration
Guide for more information.

SQAPL on macOS
Dyalog 17.1 for macOS includes support for SQAPL. However, it is necessary to
install iODBC and suitable drivers for your database before SQAPL can work. The
SQL Interface Guide describes the steps that are typically necessary to get
SQAPL connected to a MySQL database.

https://forums.dyalog.com/viewtopic.php?f=20&t=1505

Index 37

Index

A

AsChild 14

B

Bug Fixes 6

C

CEFVersion 15

D

DoPopup 16

E

ENABLE_CEF parameter 18
Events

DoPopup 16
HTTPRequest 18, 22
SelectCertificate 28
WebSocketClose 31
WebSocketError 31
WebSocketReceive 32
WebSocketUpgrade 34

H

HTML 17
HTMLRenderer 18
HTTPRequest 22

I

InterceptedURLs 26

Interoperability 9

K

Key Features 5
key operator 12

M

Methods
PrintToPDF 18, 27
ShowDevTools 29
WebSocketSend 33

N

nest 12

O

Objects
HTMLRenderer 18

P

PrintToPDF 27
Properties

AsChild 14, 18
CEFVersion 15
HTML 17-18
InterceptedURLs 26
URL 18, 30

R

rank operator 12

S

SelectCertificate 28
serial number 4
ShowDevTools 29
stencil operator 12
System Requirements 8

Index 38

U

URL 30

V

variant operator 12

W

WebSocketClose 31
WebSocketError 31
WebSocketReceive 32
WebSocketSend 33
WebSocketUpgrade 34
where 12

	Chapter 1: Highlights
	Serial Number
	Key Features
	Announcements
	System Requirements
	Interoperability

	Chapter 2: Object Reference Changes
	AsChild
	CEFVersion
	DoPopup
	HTML
	HTMLRenderer
	HTTPRequest
	InterceptedURLs
	PrintToPDF
	SelectCertificate
	ShowDevTools
	URL
	WebSocketClose
	WebSocketError
	WebSocketReceive
	WebSocketSend
	WebSocketUpgrade

	Chapter 3: Non-Windows Specific Features
	Summary

	Index

